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Abstract. When constructing polynomial bases for group representations, one is led 
naturally to consider a ‘stretched product’ of states. Elementary multiplets are states that 
cannot be expressed as the stretched product of any other two states, and they can be 
identified with terms occurring in certain generating functions. In this paper we define an 
analogous stretched product of Young tableaux together with elementary tableaux. These 
may be used in a manner similar to elementary multiplets to construct generating functions. 
We consider several examples where this method can be applied and in particular we give 
new large-N (rank-free) branching rule generating functions for the group-subgroup pairs 
SU(n) x S U ( m ) c  S U ( n + m )  (first four labels non-zero), SO(n)c SU(nj  (first three labels 
non-zero) and Sp(2n) c SU(2n) (first five labels non-zero). Our method of finding these 
generating functions uses the theory of Grobner bases which allows us to make precise 
the notion of compatibility relations or  forbidden products of elementary tableaux. 

1. Introduction 

Generating functions are a convenient and useful way of both presenting and calculating 
group theoretical information. Examples are provided by branching rule generating 
functions (Patera and Sharp 1979, 1982, Saint-Aubin 1980, Gaskell and Sharp 1981), 
weight generating functions (Gaskell et a1 1978), orbit generating functions (Michel 
er a1 1988) and generating functions for plethysms (Patera and Sharp 1980). In each 
case the generating function is a rational function of a set of auxiliary variables; the 
branching rule multiplicities, weight multiplicities etc, then appear as the coefficients 
in its power series expansion. Generating functions provides ‘global’ information in 
the sense that they contain information about all irreducible representations (or in 
some cases infinite subsets of all irreducible representations). 

Another technique which is also useful, particularly in the case of the classical 
groups, is that of Young tableaux (Littlewood 1950, Stanley 1980, King and El- 
Sharkaway 1983, Baclawski 1983, King 1975, 1976, Black and Wybourne 1983, Yang 
and Wyboume 1986, Cummins 1987, Tokuyama 1986). The methods have also been 
applied to the exceptional groups (King and Al-Qubanchi 1978, 1981a, b, Wybourne 
1973, 1979, 1984, Wyboume and Bowick 1977) and supergroups (Dondi and Jarvis 
1981, Balantekin and Bars 1981a, b, 1982, Bars et a1 1983, Farmer and Jarvis 1984, 
Bars 1984, Delduc and Gourdin 1984, 1985, Morel et a1 1985, Gourdin 1986, Cummins 
and King 1987a, b). Here the emphasis is different. Combinatorial procedures are 
given that involve filling the boxes of some Young diagram with integers subject to 
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certain constraints. The number of ways of doing this is then the required multiplicity 
(possibly after some modifications, see King (1975)). The analysis in this case is ‘local’ 
when compared with the generating function approach since one calculates multi- 
plicities for particular representations. 

Techniques have been developed to find generating functions that involve poly- 
nomial bases for group representations (Moshinsky and Devi 1969, Sharp and Lam 
1969). In this approach it is natural to consider stretched products of states and so 
to define elementary multiplets as states that are not the product of any other two 
states. From these elementary multiplets and their syzygies (algebraic relations) it is 
possible to deduce the required generating functions. We refer the reader to the 
references above for more information. 

In this paper we shall describe how the method of Young diagrams may be extended 
to calculate generate functions. In practice this method is simple to apply, mainly 
because it picks out a unique set of elementary tableaux (which play the same role as 
elementary multiplets) and a corresponding set of syzygies, which may be determined 
‘locally’. Computer programs may be written to perform these calculations. The key 
idea is to define a stretched product of Young tableaux which can be shown in many 
cases to preserve the constraints mentioned above. Elementary tableaux are then those 
that cannot be expressed as the product of two distinct tableaux. They may be found 
using algorithms developed for the solution of linear Diophantine equations (Stanley 
1973, Huet 1978). Bases for the syzygies (algebraic relations) between these elementary 
tableaux may then be found using the theory of Grobner bases (Buchberger 1989) and 
from these we may find a generating function. The use of Grobner bases in this context 
makes rigorous the ideas of compatibility relations or forbidden products of elementary 
tableaux and their use in calculating generating functions (cf Sharp and Lam 1969). 
Essentially the idea is that any tableau may be constructed as a product of elementary 
tableaux, but in general this expression is not unique. Uniqueness may be restored 
by forbidding the product of some of the elementary multiplets. From this unique 
decomposition it is a straightforward task to find a generating function. The problem 
is to know when all forbidden products have been found and if a given set of forbidden 
products gives rise to a unique decomposition of every tableau (these two questions 
are not identical). These problems are solved by theorems in the theory of Grobner 
bases which we quote in section 4. 

For the method to be applicable it is necessary that a Young tableau technique 
exists for computing the multiplicity of interest which does not involve modification 
rules (some SO(2n) algorithms also do not work). Although this is a limitation, 
particularly as regards branching rules, new Young tableau techniques that do not 
require modification rules (Tokuyama 1986) seem well suited to the method. We are 
also limited by the complexity of the final generating functions; the larger the generating 
function the more difficult it is to calculate. This problem, however, is one that applies 
to any generating function and not just to our particular method of calculating them. 

The first use of Young tableaux for finding elementary multiplets appears in the 
work of Moshinsky and Devi (1969), where the branching SO(3) c SU(3) was con- 
sidered. Here elementary tableaux were called elementary permissible diagrams. The 
character generators of Stanley (1980), Baclawski (1983) and King and El-Sharkaway 
(1983, 1984), are also closely related to the problems we shall be considering, and we 
shall have more to say about them in section 5 .  

In section 2 the notation and some basic results of Young tableau theory will be 
reviewed. In section 3 we describe the stretched product of tableaux and show that 
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in the cases we consider it is well defined. Section 4 contains some results on rank-free 
generating functions, together with an explanation of the properties of Grobner bases 
that we have used and section 5 contains examples of other types of generating function 
that can be found using the same techniques. The final section contains some comments. 

2. Young diagrams and Young tableaux 

A partition A = ( A , ,  A 2 , .  . . , hk) is a weakly decreasing sequence of positive integers 
A ,  2 A 2  5.. . 3  hk > 0. Associated with each partition A is a Young diagram F A .  This 
is an array of left-justified boxes in the plane such that the number of boxes in the ith 
row is Ai .  The depth / ( A )  of the partition A is defined to be the number of parts-of A, 
for example 1(2,1,1) = 3. Thus / ( A )  is the number of rows of F A  and we set I (  F A )  = /(A). 

We say that the Young diagram F A  contains the Young diagram F“ if Z ( A )  5 /(a) 
and Ai 3 ai, 1 is /(a); in other words F“ may be placed entirely inside F A  in the 
top left hand corner as illustrated in figure 1. If F A  contains F“ then we write F“ c F A .  
Finally we define [ A I  = Zi Ai to be the size of the partition A. 

i/ Figure 1. F A  contains F“. 

It is well known that the irreducible representations of the classical groups U( n), 
SU(n), SO(n) and Sp(2n) can be labelled by partitions. This labelling and its relation- 
ship with Dynkin’s labels may be found in table 1; for more details see King (1975). 
In fact we shall not need these results in their full generality. We simply note that if 
only the first k Dynkin labels of a representation are non-vanishing and if k is not too 
large compared with the rank of the corresponding group, then the relationship between 
the Dynkin labels aj and partition labels A i  simplifies to 

k 

Ai = a,. 

This is equivalent to the statement that aj is the number of columns of length j in F A .  
Recall that roughly speaking a Young tableau T” is obtained by filling the boxes 

of F A  with integers subject to some constraints. In this sense the computation of 
weight multiplicities, branching multiplicities, multiplicities of tensors in enveloping 
algebras etc amounts to the enumeration of certain kinds of Young tableaux. In the 
remainder of this section we shall state some of these enumeration theorems together 
with the relevant definitions. The reader should note that in the literature there is a 
large amount of variation in notation. 

Dejinition 2.1. A Young taleau T“ is a Young diagram F A  with some or all its boxes 
filled with integers (excluding zero) in such a way that the unfilled boxes form a Young 
diagram F“. Clearly we must have F“ c F A .  We shall call the partition a the content 



1932 M Couture, C J Cummins and R T Sharp 

Table 1. Partition labels and corresponding Dynkin labels for several groups. 

Group Partition label Dynkin label 

a, = A, - A ,  + , 
an-,  = p, - F,+~ 

a P = A p + k L q  
p=I(A)  q = n - p  

I is the U( 1 )  weight 

1 C i S p - 1 
1 C i S q - 1 

l=Ep', A ,  -Zf,, @, 

ai = A J  - A , + ,  
a n - ,  = A n - ,  

1 C i S  n - 2  

a, = A ,  - A , + ,  
a,, =A, ,  

1 S i s  n - 1 

a, = A i  - A , + ,  
a,, = 2A,  
a, = A i  - A i + ,  
a,, =2A, + 1 

IC is n -  1 

1 S i s  ?I- 1 

a, = A ,  - A , + ,  
an- ,  = A,,-, +A, ,  
a, = An-l  -A ,  

1 S i s  n - 2  

a, = A i  - A , + ,  
a n - ,  = A,- ,  - A ,  
a,  = A,-, + A ,  i 1 

1 S is n - 2  

a , = & - A , + ,  1 S i S n - 2  
an- ,  = A n - l  + A ,  + 1 
a,, = A,-, -A ,  

A ,  = Zti l ,  ak 

A, =E;=, ak 

A, =Z:;: a, + f a ,  
a,, even 
~ ~ = ~ ; : : a , + f ( a , , - ~ )  
a, odd 

of the tableau TA and we say that TA has shape A -U. The sequence 6 = 
(a,, Q2, . . . , ek), where = number of occurrences of i minus number of occurrences 
of - i  in TA, is called the weight of TA. The depth I (  TA) of TA is the number of rows 
in the corresponding Young diagram. We also set 

T = {TI T is a Young tableau} 

Tf = { T E T 1 T has only positive entries} 
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T k = { T E T I Z ( T ) s k , a n d  Thasonlyentr ies  *1,*2, . . . ,*k} 

T ~ +  = T~ n T + .  

When imposing conditions on tableaux it is convenient to fix a total ordering of 
the integers occurring in these tableaux. Unless otherwise stated, we shall use the 
ordering 

-1 < 1 < - 2 < 2 < .  . . < - k <  k < .  . . (2.2) 

which reduces to the usual ordering on T + .  An exception is the case of Tokuyama’s 
sympletic tableaux (see below). 

Definition 2.2. A tableau TE T is said to be weakly normal if the entries in each row 
of T are weakly increasing (in the relevant ordering!) from left to right. We denote 
by WN the set of all weakly normal tableaux. 

Definition 2.3. A tableau T E T is said to be standard if it is weakly normal and the 
entries in each column are strictly increasing from top to bottom. We denote by S the 
set of all standard tableaux. 

King (1976) and King and El-Sharkaway (1983) have defined Young tableaux for 
computing the weight multiplicities of the representations of each of the classical 
groups. The treatment of the various orthogonal groups is, however, quite involved 
and we shall give only the definition of unitary and symplectic tableaux. 

Definition 2.4. We call the elements of Sk+ k-unitary tableaux or simply unitary 
tableaux and denote this set by Uk. 

Definition 2.5. A tableau T is said to be a k-symplectic tableau or simply a sympletic 
tableau if (i)  T E  Sk and (ii) r ( i ) d  i and r ( - i ) <  i, 1 d i s  k, where r ( i )  and r ( - i )  are 
the lowest rows containing i and - i  respectively. 

We denote by Spk the set of all k-sympletic tabeaux. 

Definition 2.6. Let T E T; then we call the sequence of numbers obtained by reading 
the entries of T starting from the top right and reading from right to left and from 
top to bottom the word of T, which is denoted by W (  T). We denote by Cr( i ,  p) the 
number of occurrences of the integer i in the first p terms of W ( T )  and by 1 W ( T ) J  
the number of terns in W (  T). 

Definition 2.7. Let T E  T+ and let m be the largest integer occurring in W (  T); then 
T is said to satisfy the LR (Littlewood-Richardson) condition if 

C r ( i ,  p )  2 C T ( i +  1, p) 1 i s  m - 1 1 p d I W (  T)I 

and we call T an LR tableau if it is also standard. We denote by LR the set of all LR 
tableaux. 

Comment. The LR condition implies that the weight of T is a partition, and also that 
if i > 1 then i does not occur in rows 1 to i - 1. 
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Recently Tokuyama (1986) has introduced a new type of tableau that may be used 
to compute branching multiplicities of Sp(2n) c SU(2n).  They are defined as follows. 

Dejnition 2.8. Let T E T 2 k ;  then we say that T is a k-Tokuyama tableau if it satisfies 
the following conditions: 

(i) the content of T vanishes (every box is filled); 
(ii) only the integers * l ,  *2, . . . , *k occur in T ;  
(iii) T is standard under the ordering 1 < 2 < . . . < k < - k < -( k - 1 )  < . . . < - 2  < 

(iv) the positive entries satisfy the LR condition cT(  i, p )  2 cT(  i + 1, p ) ,  1 d i d k - 1, 

(v) if d T ( i , p )  = c T ( i ,  p )  - c T ( - i , p )  then dT(i ,  p )  2 d T ( i +  1 ,  p ) > O ,  1 s is k-1,  1 s 

-1; 

1 s p s I W( T)I ; 

p s i  W ( T ) / .  

Note. Condition (iv) may be replaced by the condition that the positive entries of T 
form a canonical tableau. This is to say that the entry i occurs only in the ith row 
and the boxes corresponding to these entries form a Young diagram. 

These various tableaux may be used to compute many types of multiplicities. 

Theorem 2.1 (King and El-Sharkaway 1983). (i)  The multiplicity of the weight 8 =  
(SI,  S2,.  . . , &-,) in the representation of SU(k) labelled by the partition A, / ( A )  s 
k - 1, is given by the number of k-unitary tableaux T A  of shape A and such that the 
weight 1 9 = ( 6 ~ , 4 ~  , . . . ,  ak) of T k  satisfies ~ , = 4 , - 6 2 ,  g2=a2-a3  ,..., gk-,= 
6 k - I  - Q k .  

(ii) The multiplicity of the weight 6 = ( 6,, a2, . . . , 6,) in the representation of 
Sp(2k) labelled by the partition A, [ ( A )  d k is given by the number of k-symplectic 
tableaux of shape A. 

Theorem 2.2 (Littlewood 1950). (i)  Consider the restriction of the representation of 
SU( n + m) labelled by the partition A to the canonical subgroup SU( n )  x SU( m). If 
l ( A )  s min(n - 1 ,  m - 1) then the multiplicity of the representation of SU(n) x SU(m) 
labelled by the pair of partitions (a, T )  is the number of LR tableaux of shape A -a 
and weight r. 

(ii) Consider the restriction of the representation of SU( n )  labelled by the partition 
A to the canonical subgroup SO(n).  If / ( A ) <  n / 2 - 1  for even n and l ( A ) S $ ( n - l )  
for odd n, then the multiplicity of the representation of SO( n )  labelled by the partition 
a is the number of LR tableaux of shape A -a and such that the weight has only even 
parts. 

(iii) Consider the restriction of the representation of SU( n )  labelled by the partition 
A to the canonical subgroup Sp(2n). If / ( A )  C n, then the multiplicity of the representa- 
tion of Sp(2n) labelled by the partition a is the number of LR tableaux of shape A -a 
and such that the weight (or more precisely the corresponding Young diagram) has 
only even columns. 

Comment. We call the branching rules described in the previous theorem rank-free 
branching rules since they apply to any rank provided the constraints referred to in 
the theorems are satisfied. These restrictions may be removed if we take modification 
rules into account. For the case of the branching to SU( n )  x SU( m )  the modification 
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rule is very simple, we simply delete all representations (U), ( T )  where either / ( a )  > n 
or I( r )  > m. If the equality holds we remove all columns of length n or m respectively. 
The modification rules for SO( n )  and Sp(2n) are a little more complicated and details 
may be found in King (1975). For the case of Sp(2n), Tokuyama (1986) has devised 
a different type of tableau that requires no modification rules. 

Let U(g) be the universal enveloping algebra of the Lie algebra g of the Lie group 
G. U(g) is G-module and is in fact isomorphic as a G-module to S(g) the symmetric 
algebra of g considered as the adjoint representation of G. We may thus decompose 
U(g) into a direct sum of irreducible G-modules which respects the grading of U(g) 
by degree. To use Young tableaux to compute the multiplicities of these irreducible 
constituents of the universal enveloping algebra of SU( n )  we first make the following 
definition. 

Dejinition 2.9. Let / L  be a partition and n a positive integer such that n 3 f ( p ) ,  then 
the n-complement of p, r say, is a partition such that 

r: = n -P:,-~+, 1 S i s  p , ,  

The following theorem is easier to state for U(k) than SU(k). 

Theorem 2.3. The multiplicity of the representation of U( k )  labelled by the partition 
A, / ( A )  S k, of degree n in U(U(k)) is given by the number of LR tableaux of shape 
A - p  and weight T where p is any partition of n, and T is the k-complement of p. 

Note. To obtain the multiplicities in SU(k) we must count the number of LR tableaux 
of shape A * - p  where A *  is any partition obtained from A by adding columns of 
length k to the corresponding Young diagram. We must also, however, exclude all 
tableaux whose first column is of the form 

This corresponds to eliminating the degree-1 scalar which arises from the branching 
of the adjoint of U(k) to SU(k). For the purposes of finding syzygies and generating 
functions as described in sections 4 and 5 ,  the easiest procedure is to retain all tableaux, 
and then simply delete the factor (1 - U)-' from the generating function. The above 
tableau (2.3) must then be removed from the list of elementary tableaux. 

Tokuyama (1986) has described a remarkable method of finding the branching 
multiplicities for the branching Sp(2k) c SU(2k), which requires no modification rules. 
The result is contained in the following theorem. 

Theorem 2.4. Consider the restriction of the representation of SU(2k) labelled by the 
partition A, f (A)S2k-1,  to the canonical Sp(2k) subgroup. The multiplicity of the 
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Sp(2k) representation labelled by the partition U, l (u)S k, is the number of k- 
Tokuyama tableaux of shape A and weight U. 

Comment. Theorem 4 also applies in the case l ( A )  = 2k, in this case, however, the 
corresponding representation of SU(2k)  is equivalent to a representation with / ( A )  < 2k. 

3. Stretched products of Young tableaux 

In order to introduce the stretched product of tableaux we first make the following 
definition. 

Dejnition 3.1. The stretched product of two partitions, A.p, is a partition with parts 
( A . P ) ~  = A ,  + p i  (if i exceeds the length of either partition then the corresponding part 
A i  or pi is taken to be zero). We extend this definition to the stretched product of 
Young diagrams by setting F A .  F” = FA+. 

Note. This stretched product is usually called the sum of the partitions A and p, and 
is written A + p .  We have chosen the product notation since this is more in harmony 
with the standard notation of elementary multiplets. 

DeJinition 3.2. Let T A  and T” be weakly normal Young tableaux and let nA( r, s) 
(respectively n@(r, s)) be number of entries of the integer r occurring the sth row of 
T A  (respectively T”);  for convenience, the unfilled boxes are considered to be filled 
with zeros. The stretched product T”.T@ is defined to be the weakly normal Young 
tableau obtained by placing integers in the boxes of FA+ in suih a way that 

n ( r ,  s ) = n A ( r ,  S ) + n p ( r ,  s> 

where n( r, s) is the number of entries r in the sth row of TA.  T@, 

Example. 

Comment. The stretched product makes WN into a commutative semigroup and WN+,  
WNk and WNk+ are subsemigroups of WN. 

Dejnition 3.3. Let X be a subsemigroup of W N ;  then an element a E X is said to be 
an elementary tableau (of X )  if a is not the stretched product of two elements of X.  

Comment. Clearly the elementary tableaux generate X ,  but in general there need not 
be a finite number of elementary tableaux and the expression for an arbitrary element 
of X need not have a unique expression as a product of elementary tableaux. 

In the rest of this section we will establish that the subsets of WN introduced in 
the last section a.qe in fact closed under taking stretched products. In some simple 
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cases it is also possible to state the general form of the elementary tableaux (or at least 
an algorithm for their construction). In general, however, the task of classifying all 
elementary tableaux seems to be difficult and we shall be content to describe some 
particular cases in the next two sections. 

Proposition 3.1. Let Tl ,  T2 E S k ;  then the product Tl . T2 E Sk. 

Proof: Clearly Tl , T2 E WNk by construction; assume that it is not standard. Then for 
some box with entry 17 in the ith row of Tl . T2 the box above in the ( i  - 1)th row must 
contain an equal or larger symbol. Thus the number of boxes containing a symbol 7 
or smaller plus the number of unfilled boxes in row i is strictly greater than the number 
of boxes containing a symbol smaller than 77 plus the number of unfilled boxes in row 
i - 1. On the other hand, for each of Tl and T2 this inequality is reversed, or equality 
holds, since both are standard. But adding these two inequalities gives us a contradic- 
tion and so TI. T2 is standard. 

Corollary 3.1. If TI ,  T,E U k  (respectively S p k )  then Tl.  T2e U k  (respectively S p k ) .  

Proof: U k  = Sk+  and the condition of having only positive entries is clearly preserved. 
Similarly Spk = S k  and the additional constraints are again clearly preserved by the 
stretched product. 

Proposition 3.2. Let Tl , T2 E WN' satisfy the LR condition, then TI .  T2 satisfies the LR 
condition. 

Proof: Let us assume that Tl.  T2 does not satisfy the LR condition, then there exist i 
and p such that CT,,T2( i, p )  < CT,,T2( i + 1, p ) .  On the other hand, the corresponding 
subword arises from the combination of two subwords from Tl and T2 in each of 
which the opposite inequality or equality holds. Clearly the number of occurrences 
of the symbol i is just the sum of the occurrences in each subword and so we have a 
contradiction. 

Corollary 3.2. If T,, T2e LR then TI. T2e LR. 

Proof: By propositions 3.1 and 3.2 the required properties of standardness and of 
satisfying the LR conditions are both preserved by the stretched product. 

Corollary 3.3. If Tl and T2 are two LR tableaux with weights which have only even 
rows (respectively columns) then Tl . T2 is an LR tableau whose weight has only even 
rows (respectively columns). 

Proof: The weight of TI .  T2 is the stretched product of the weights of TI and T2. It 
is clear that this product of Young diagrams preserves the required properties of rows 
and columns. 

DeJinition 3.4. It will be convenient to denote the set of all LR tableaux with weights 
having only even rows (respectively columns) by LR, (respectively LR,,), and similarly 
LR,k (respectively LR:,) are the LR tableaux of depth less than or equal to k whose 
weights have only even rows (respectively columns). 
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We now show that for each fixed m, LR", LR," and LR,", have only a finite number 
of elementary tableaux. First we recall a result given in Stanley (1983) concerning the 
solutions in non-negative integers of linear systems of equations over the integers. Let 
#I be an r x n matrix with integer entries, r s n and rank( #I) = r. Define 

E, = { p E N" 1 #Ip = 0) 

then E,  is a monoid and also has the following property. 

Theorem 3.1 (Stanley (1983), theorem 3.1). E, is  a finitely generated monoid. 

The task is thus to find a parametrisation by non-negative integers subject to linear 
constraints of the set of Young tableaux of interest. For example, let us adopt the 
parametrisation shown in figure 2. In figure 2, a,, n(1, l ) ,  a 2 ,  n ( l , 2 ) ,  . . . are arbitrary 
non-negative integers (note that this means we do not necessarily have a Young tableau 
since the row lengths may not be weakly decreasing). We can then make the following 
proposition. 

Figure 2. The parametrisation adopted for the 
purposes of proposition 3.3. 

Proposition 3.3. The linear constraints for column strictness (including the constraint 
that the row lengths be weakly decreasing) are 

k - 1  k 

n ( i , j - I ) -  1 n ( i , j ) + a j - i - l - S k , , = ~  l < k 4 j S I ( T A )  j # l  s k j 3 O  (3.1) 
i =  I i = l  

and the conditions for satisfying the Littlewood-Richardson condition are 

n ( k - 1 ,  i - 1 ) -  n ( k ,  i ) - t k , , = O  2 S k 4 j 4 1 ( T A )  fk , ,ao.  (3.2) 
i =  k i = k  

As an example, consider the case of two rows, 

The constraint equations become 

- n( 1 , 2 )  + a1 - S1.Z = 0 

n ( 1 , l ) -  n ( l , 2 )  - n ( 2 , 2 ) + a ,  -s2 .2  = o  
n(1, l ) - n ( 2 , 2 ) - t , . , = O  

(3.3) 
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corresponding to the inequalities: 

a, a n ( l , 2 )  1 never occurs more than once in a given 
column 

n( 1 ,  1 )  + n ( 2 , 2 )  a n(  1 ,2 )  + n ( 2 , 2 )  

n(1,  l ) a n ( 2 , 2 )  LR condition. 

Since the equations (3.3) are homogeneous we conclude from theorem 3.1 that there 
exist a finite number of 'fundamental' solutions to these equations (the zero solution 
is excluded) with the property that every other solution may be expressed as a sum 
of these fundamental solutions and that each fundamental solution is not the sum of 
any other two (non-zero) solutions. This is expressed in the following proposition. 

first row B second row 

Proposition 3.4. LR" has a finite number of elementary tableaux. 

Huet (1978) has given an algorithm for generating the fundamental solutions of a 
single homogeneous linear diophantine equation. This may be easily generalised to 
the case of simultaneous homogeneous linear diophantine equations. We have written 
a computer program in Pascal to do this and the results will be presented in the next 
section. 

Returning to our example, we find in this case the fundamental solutions 

(3.4) 

These correspond to the following elementary tableaux: 

It is not difficult to find similar sets of equations for LR,k and LR,k, and so to deduce 
that they too have a finite number of elementary tableaux. We omit the details, which 
are straightforward, but we note that to ensure that a variable x is even it is sufficient 
to introduce a dummy variable y and the additional equation x - 2y  = 0. 

Finally we note the following result. 

Proposition 3.5. If T, and T2 are two k-Tokuyama tableaux then TI. T2 is a k-Tokuyama 
tableau. 

Proof: Similar to propositions 3.1 and 3.2. 
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4. Results 

In the last section we established that various subsets of Tare closed under the stretched 
product operation and that in some cases the number of elementary tableaux is finite. 
We shall proceed in this section to find the elementary tableaux and syzygies (algebraic 
relations) for LR4, LR: and LR:,. The theory of Grobner bases (Buchberger 1989) 
plays an essential role in the calculation of these syzygies and also provides the key 
to calculating the final generating function. 

To illustrate the general situation, let us consider a simple example, SO( n )  c SU( n )  
with only the first two labels non-zero (this is the example considered in Moshinsky 
and Devi (1969) section 4B). We assume that n is sufficiently large that theorem 2.2(ii) 
may be applied (so that in fact we are considering LR:), in this case n 2 5 .  Then, for 
example, the multiplicity of the representation (3) inside the representation (4,3) is 
given by the number of LR tableaux of shape (4,3) - (3) such that the weight is even. 
There is only one possibility: 

and so the multiplicity is one. From the results of the last section the tableaux in LR: 
may be multiplied together using the stetched product. Moreover, the elementary 
tableaux may be found by finding the fundamental solutions to the following set of 
homogeneous linear Diophantine equations (this takes only a few seconds of CPU time 
on a VAX 8550): 

- n ( l , 2 ) + a 1 - s S 1 , 2 = 0  

n( 1 , l )  - n (  1,2) - n (2,2) + a ,  - s2,2 = 0 

n(1 , l )  - n(2,2) - r2,2 = 0 

n ( l , l ) +  n(1,2) -2u, = 0 

n (2,2) - 2u2 = 0 

where u1 and u2 are new dummy variables. Note that although the dummy variables 
s , , ~ ,  s ~ , ~ ,  f 2 , * ,  U,  and u2 are necessary to impose the constraints they are not needed 
to reconstruct the tableaux since n(1, l ) ,  n ( l ,2 ) ,  n(2,2), a ,  and a2 are a complete set 
of parameters. 

Every possible tableau may then be obtained by taking products of the elementary 
tableaux which may be found in table 4(a)  where they have been labelled a, 6, b, 6, e 
and m. The expression for the above tableau in terms of these is given by: 

Now suppose we wish to construct a generating function for this branching rule. 
This will be a rational function of the auxiliary variables a , ,  az ,  b,  and b2 such that 
the coefficient of the term a7aibfb2' in the power series expansion is the multiplicity 
of the SO(n) representation (p, q )  in the SU(n) representation (a ,  b )  (we use Dynkin 
labelling in the generating functions. Since the number of non-zero labels is sufficiently 
small the relationship between the two labellings is given by (2.1)). We can try to find 
the form of this generating function by using the elementary tableaux. 
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Consider tableaux obtained from the product eXmY of e and m ;  since e corresponds 
to a term a:b: and m corresponds to a2a ,b ,  in the expanded generating function, it 
is not difficult to see that e x m y  corresponds to a term ( a : b : ) x ( a 2 a l b l ) Y .  Summing over 
all x and y produces a term ( 1  - a:b;)-'(  1 - a2al b l ) - '  in the generating function. This 
might suggest that the full generating function is given by I I i  (1 - Zi)-' where Zi are the 
auxiliary labels of the ith elementary tableau and the product is taken over all the 
elementary tableaux. Unfortunately things are not quite so simple. 

If we calculate the multiplicity of the representation ( 2 )  inside ( 4 , 2 )  we find that 
it is one since we have only the single tableau 

(4.2) 

On the other hand if we consider the generating function suggested above we find that 
the multiplicity is two since a:a:b: occurs in the expansion of ( 1  - a2a,b , ) - '  from the 
elementary multiplet m and in ( 1  - a;) - ' (  1 - a:b:)-' from the elementary multiplets d 
and e. The problem is clear if we construct the stretched products: 

m -  

We see that the tableau (4 .2 )  may be expressed in two ways as a product of elementary 
tableaux. In other words, there is a syzygy m2 = ed. The effect of this is that (1 - 
a2a,b , ) - '  must be replaced by ( 1  + a2al b l ) ,  corresponding to the fact that in the general 
expression for a Young tableau as a product of elementary tableaux we may eliminate 
m2k. In fact no other changes are necessary and the form of the generating function is: 

In order to generalise this example to more difficult cases it is necessary to introduce 
more machinery. First let us denote by R '  the commutative ring with unit generated 
by the elements of LR; with a unit adjoined and set R =QOz R'. Let P =  
Q[a, d, b, b; e, m] (we consider these letters now to be indeterminates rather than 
elementary multiplets), then we have a surjection of rings f :  P+ R where a, d, b, 6, e 
and m map to the corresponding Young tableaux. The problem is that f is not an 
isomorphism since, for example, f (  m2  - e d )  = 0.  Our task then is to find generators 
for the kernel, K ,  o f f  in P, i.e. a basis for the (first-order) syzygies satisfied by the 
elementary tableaux. To do this it is convenient first to replace R by an isomorphic 
subring of S = Q [ x ,  , x 2 ,  x 3 ,  x 4 ,  x , ]  using the parametrisation of LR: given above. Given 
any tableaux T with parameters n(1 ,  l) ,  n ( l , 2 ) ,  n ( 2 , 2 ) ,  a ' ,  a2, we definej:  R - ,  S by 

x2 x3 x41x;2 and extend linearly. It is not difficult to see that j is 
injective and that its image, I,  is the subring generated by the images of the elementary 
tableaux, so I = ( x 4 ,  x : ,  x 5 ,  x :x: ,  x:x:,  xIx2x4) .  Now letting i = j  0 f we see that I = 
P I K ,  so finding generators for K is equivalent to finding generators for the syzygies, 
or algebraic relations, satisfied by the generators of I.  One such relation is ( X ~ X ~ X ~ ) ~  - 
(x: ) (x:x: )  = 0 where the left-hand side is the image of m2 - ed. This problem can be 
solved using the theory of Grobner bases. The reader is referred to the review article 
by Buchberger (1989) for some details. We shall only require the two results given 
below. 

j (  T )  = x n ( l . l )  n ( 1 , 2 )  n ( 2 , 2 )  U 
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Here F is a finite set of polynomials from Q [ x , ,  . . . , x , ] ,  Ideal(F) is the ideal 
generated by the elements of F in Q [ x ,  , . . . , x , ] ,  GB( F )  is another set of polynomials 
which also generate Ideal(F) which is known as a (reduced) Grobner basis of Ideal(F). 
GB(F)  is obtained from F by Buchberger’s algorithm (Buchberger 1989, theorem 
2.3.1). Note that the calculation of G B ( F )  requires the choice of some ‘admissible’ 
ordering for the monomials of Q [ x ,  , . . . , x , ] ,  (Buchberger 1989, p 54), for example 
lexical, degree-lexical etc. Different orderings will in general lead to different Grobner 
bases (and different generating functions). [uIF  is the residue class of the polynomial 
U modulo Ideal(F) and MLP(F) is the set of multiples of leading terms (with respect 
to the given ordering) in F. 

Theorem 4.1 (Buchberger 1989, p 61). Let F = {f,, . . . , f m }  be a set of polynomials 
from Q [ x , ,  . . . , x , ] ,  let y , , .  . . , y ,  be new indeterminates and let < be the lexical 
ordering defined by y ,  <. . . < y ,  < x ,  < . . . < x, .  Then GB({y l  - f l , .  . . , Y m  - f m } )  n 
Q [ y , ,  . . . , y,] is a reduced Grobner basis for the ‘ideal of algebraic relations’ of F 
over Q, i.e. for the set { g  E Q[yl , .  . . , y , ] J g ( f , , .  . . ,fm) = 0). 

Theorem 4.2 (Buchberger 1989, p58) .  The set { [ u I F I u E M L P ( G B ( F ) ) }  is a linearly 
independent basis for Q [ x ,  , . . . , x,]/Ideal(F) considered as a vector space over Q. 

To see how these two theorems are used let us apply them to our example. Here 
F = { x , ,  x : ,  x ,  , x:x: ,  .:xi, x1x2x4}  and since F has six elements we introduce six new 
variables y ,  , y 2 ,  y, ,  y,, y ,  and Y 6  which we shall identify with a, d, b, 6, e and m. We 
take the lexical ordering with x1  > x2 > x3 > x4> x ,  > m > e > 6> b > d > a. To find the 
algebraic relations satisfied by the elements of F, we apply the first theorem, i.e. we 
apply Buchberger’s algorithm to the set of polynomials { x ,  - a, x:  - 6, x ,  - b, x:x: - b; 
~ 2 ~ 4 - e ,  x 1 x 2 x 4 - m }  which are considered to be generators of an ideal in 
Q [ x ,  , . . . , x , ,  a, . . . , m ] .  All such calculations have been done using either the Grobner 
basis package in MAPLE? or using the program CoCoAS. The required Grobner basis 

ed} .  The intersection of this basis with P = Q[ a, . . . , m ]  is just { m2 - ed}  which is thus, 
from the first theorem, the generator for the ideal K introduced above. Thus there is 
essentially only one syzygy satisfied by the elementary multiplets. Now P / K  is 
isomorphic to R by construction. On the other hand, the second theorem tells us how 
to construct a vector space basis for P / K .  It consists of the residue classes of all the 
monomials that are not multiples of the leading term of m2 - ed. Since m > e > ii the 
leading term is simply m 2 ,  and so the monomials which are not multiples of m2 are 
simply all monomials in a, d ,  b, 6, e and m which contain m linearly or not at all, with 
no restrictions on the other variables. This basis of P / K  may be identified with the 
elements LR: and so we have constructed a one-to-one correspondence between the 
tableaux of LR: and restricted products of elementary tableaux. It is now a simple 
matter to construct the required generating function. We grade P by associating with 
each of the generators a, E, b, 6, e and m the group-subgroup labels of the correspond- 
ing elementary multiplet. This induces a grading on P / K  since K is homogeneous 
with respect to this grading. Since we have a basis of P / K  consisting of products of 
(the images of) the generators of P it is not difficult to write down a generating function 

2 2  

hereis { x : - d ,  x l x 2 a - m ,  x , m - x 2 a d ,  x , e - x , m a ,  x : a 2 - e , x : d - b ;  x , -a ,  x , - b ,  m 2 - 

t MAPLE is a system for algebraic computing: see Char B W, Geddes K 0, Gaston H G, Monaghan H B 
and Watt S M 1988 n e  Maple Reference Manual (5th edition) (Waterloo: Watcom). 
.$ COCOA is a system for Computations in COmmutative Algebra which runs on any Macintosh with at 
least 512Kb of RAM. It has been written by Alessandro Giovini and Giangranco Niesi (1989) and is 
available free of charge by sending a blank diskette to: Alessandro Giovini or Gianfranco Niesi, Department 
of Mathematics, University of Genova, viale Leon Battista Alberti 4, 16132, Genova, Italy. 
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for the dimensions of each graded subspace. Denominator terms come from ‘unrestric- 
ted’ variables while numerator terms come from ‘restricted’ variables or from a need 
to avoid overcounting. This is a generalisation of the calculation of a generating 
function for the PoincarC series. 

In general we proceed in the same way. First we find the elementary tableaux, 
then apply theorem 4.1 to find a Grobner basis for the algebraic relations between 
these elementary tableaux. Finally a decomposition of tableaux into products of 
elementary tableaux is given by writing down the general forms of the monomials 
which are not multiples of the leading terms of the elements of the Grobner basis 
we have found (in the previous literature this was known as eliminating forbidden 
products). Finally we write down the generating function. 

Consider now the branching SU( n )  x SU( m )  c SU( n + m) with the first four Dynkin 
labels non-zero. The elementary tableaux of LR4 are required and these are given in 
table 2 ( a )  together with their auxiliary labels. Each elementary tableau is also labelled 
by a single letter or barred letter for notational simplicity. The bars are used to 
emphasise the symmetry under the exchange of the two subgroups SU( n) and SU( m ) .  

We find that the syzygies all take the form xy = . . . where x and y are two elementary 
tableaux, so they may be presented in the form of a ‘compatibility table’ which is given 
in table 2 ( b )  and the corresponding syzygies are in table 2 ( c ) .  These lead to the 
following possible expression for the branching rule generating function in which 
Z = (1 - & ) - I ,  I, being the auxiliary labels of the elementary multiplet z as recorded 
in table 2 ( a ) .  These auxiliary labels may be obtained from the corresponding Young 
tableaux by first using theorem 2.2 to find the labels of the associated SU(n + m )  and 
SU( n )  x SU( m )  representations. These are then converted to Dynkin labels using (2.1). 
So, for example, the elementary multiplet i i s  associated with an SU( n + m )  representa- 
tion with partition labels ( 2 , 2 ,  1, 1) and Dynkin labels (0, l , O ,  1) given by all the boxes 
of the diagram, an SU(n) representation with partition and Dynkin labels ( 2 )  given 
by the empty boxes in the diagram and an S U ( m )  representation with partition labels 
( 2 ,  1, 1) and Dynkin labels (1, 0, 1) given by arranging the numbered boxes into a 
Young diagram. Finally the auxiliary variables carry these Dynkin labels as exponents. 
The generating function is 

G , ( a , ,  bi ,  ci) = A B C D m G G H ( F E F +  lEFL+jFLJ+ kLJK 

+ j J U - +  fmz + f J z F  + ieLFE + iFFI + iJFJI 

+jiFJI + tjJJjI + keKEL+ keiKEL). (4.4) 

Similarly, the elementary tableaux, compatibility table and syzygies for the rank-free 
branching S p ( 2 n )  c SU(2n) with five non-zero labels are given in tables 3 ( a ) ,  3 ( b )  and 
3 ( c ) .  They yield the following generating function: 

G,( a i ,  b i ,  ci) = ABCEFHIJKLO( D G M N  + rDGMR + p D G N P  

+ qDGPQ + qrDGQR + sDMNS + rsDMRS + tDNPT 

+ stDNST + qtDPQT + xDQRX + txDQTX + sxDRSX 

+stxDSTX+vGMNV+uGMRU+uvGMUV+pvGNPV 
+ wGPQW+vwGPVW+quGQRU+uwGQUW+uvwGUVW 
+svMNSV+suMRSU+suvMSUV+ tvNPTV+stvNSTV 

+ twPQTW+ tvwPTVW+ uxQPUX + tuQTUW+ tuxQTUX 

+ suxRSUX + stuSTUX + tuvSTUV+ tuvwTUVW). (4.5) 
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Table 2(a). Elementary multiplets for SU( n )  x SU(m)  c SU(n + m), four labels. 

Auxiliary Auxiliary 
Multiplet labels Tableau Multiplet labels Tableau 

'4'Ic3 

h a4b2c2 
6 

C 

I '3'1 b2c2 

c 

a4al  b3c2 

d 

d 

k 

e 

1 a4a2b3blc2 

a4a2b2c3cl 

f a3b,c, 

B f a3blc2  

a g a4b3cl 

i 
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Table 2(b), Compatibility table for SU(n) xSU(m)c SU(n+m). 

- 
e f f  i J J k 1 i 

e J J .J 1 2 3 J J J 
s J J v' 4 \. 5 6 J  

J J 4 7 8 J  9 
i J \ V 10 1 1  12 
f 

J v i \i 13 
J- 
J 14 9' 

k v' J v 

1 i 15 
i V 

~~ 

Table 2(e). Syzygies for SU(n)xSU(m)cSU(n+m). 

ei = cibf 9 f i =  @ 
ej = dl 10 ik = bcj 
eJ=  cibg 1 1  il = b 3  
8 = dch 12 ji= 6fi7 
f k  = c i  13 j i =  dhk 
f/ = ceh 14 J/ = bgi 
f j  = gi 15 ri= ehk 
f k  = bcCg 

_- 

Ordering: deglex 
lex: 1 T k j i f f e a b c d g h a 6 E d g 
d e g : 1  1 1  1 1  1 1  1 1 0 0 0 0 0 0 0 0 0 0 0  

Finally the results for the branching SO( n )  c SU( n )  with three non-zero labels are 
contained in tables 4(a),  4(b) and 4(c) and yield: 

G3(ai, bi, ci) = A B C m F F [ ( l  + p ) ( l +  m +  n + o ) E  + ( 1  + o ) ( i + q +  r+qr)I ] .  (4.6) 

Note that we can deduce the 'non-numerator' part of the generating function (4.6) 
from the generating function for SU( n )  x SU( m) c SU( n + m )  with three non-zero 
labels. This corresponds to doubling all the rows in the elementary tableaux except 
for those with no integers in them. We have labelled the elementary tableaux according 
to this correspondence. The numerator terms are elementary tableaux which do not 
arise in this way since some of their rows contain single entries. Their squares, however, 
do have doubled entries and so are expressible in terms of the denominator terms. 

A simple check can be applied to these generating functions: the number of 
denominator factors in each term should be equal to the number of group labels, 
representation plus internal, minus the number of internal subgroup labels (Seligman 
and Sharp 1980). For SU( m )  x SU( n )  c SU( m + n ) ,  first four labels non-zero, we have 
4m +4n - 6  as the number of group labels, 4m +4n -20 as the number of internal 
subgroup labels. The difference, 14, is the number of denominator factors. 

For Sp(2n) c SU(2n), first five labels non-zero, we have 10n - 10 as the number of 
group labels, 10n -25  as the number of internal subgroup labels and hence 15 as the 
number of denominator factors. For SO( n )  = SU( n) ,  first three labels non-zero, we 
have 3n -3  group labels, 3 n  - 12 internal subgroup labels, and hence 9 denominator 
factors. 

In each case the number of denominator factors is rank-independent and agrees 
with the generating functions given above. 
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Table ya). Elementary multiplets for S p ( 2 n ) c  SU(2n),  five labels. 

Auxiliary Auxiliary 
Multiplet labels Tableau Multiplet labels Tableau 

0 

P 

4 

r 

S 

b4 b2 F 
4 r 
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Table Yu). (continued) 

Auxiliary Auxiliary 
Multiplet labels Tableau Multiplet labels Tableau 

b, 

4 

W 

X 

2 4  

Table X b ) .  Compatibility table for S p ( 2 n ) c  SU(2n). 

~~ 

d J  J J v J d J d J 1 2 3 J  
g J g J " J J 4 5 v  J d 24 
m J v 6 7 J  d 8 J 9 23 
n v J 10 11 J *I 12 J 13 25 
P v J 14 15 v 16 13 J 26 
9 J 17 J 4 18 v' J 
r d v 22 v 19 20 J 
S J v  J 4 21 J 
t v d J J J 
U " J 4 27 
U J J 28 
W J J 
X J 

Table YE).  Syzygies for Sp(2n) c SU(2n). 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

du = Ih 
dv  = In 
dw = lp 
gs = k m  
g f  = cfk  
mp  = bgn 
m q  = bgo 
mt = cfs 
m w  = vgb 
nq = op 
nr = cho 
nu = vh 
n w = v p  
p r  = chq 

15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

ps = bkn 
pu = wh 
qs = bko 
qu = WO 

rw = cqu 
sw = vbk 
rt = xc 
m x  = rfs 
gx = krf 
nx  = tho 
p x  = htq 

wx = utq 

rv = cou 

vx  = U t 0  

Ordering: deglex 
lex: w m r x d g n p q s U U t b c f h k I o 
deg: 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0  



1948 M Couture, C J Cummins and R T Sharp 

Table +a). Elementary multiplets for SO(n) c SU(n),  three labels. 

Auxiliary Auxiliary 
Multiplet labels Tableau Multiplet labels Tableau 

d 

b lLlLl 
m 

U 

a 
m E a: 

e 

f 

f m 

Table q b ) .  Compatibility table for SO(n) c SU(n) .  

e n 0 P 4 i m r 

e 4 1 v' v' 2 J  3 4 

i 4 5 6 J  7 J  ri 
2 9 4  10 11 m 8 

n 12 13 J 14 15 
0 16 4 ri J 
P 17 18 19 
4 20 7 
r 21 
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Table qc) .  Syzygies for S O ( n ) c  SU(n) .  

1949 

~~ ~ 

1 ei = b'cif 12 n 2  = fe 
2 eo = mn 13 no = f m  
3 eq = bfm 14 nq = bfo 
4 er = bmp 15 nr = bop 
5 mi = dbq 16 o2 = cif 
6 ni = boq 17 p 2  = 6 f  
7 p i  = qr 18 P4 ={r  
8 m'=cie 19 pr = bq 
9 mo = cin 20 q 2  = f i  

10 mq = cibf 21 r2 = 6i 
11 mr = cibp 

Ordering: deglex 
lex: e i m n o p q r a b c f ci 6 P f 
deg: 1 1  1 1  1 1  1 1  0 0 0 0 0 0 0 0 

5. Other generating functions 

In the last section we gave some new generating functions for rank-free branching 
rules using the Young tableaux method. In this section we give some further examples 
of problems that might be attacked. 

5.1. SU(3) generating functions 

The elementary multiplets for character generators correspond to the weight spaces of 
the fundamental representations of the group (Stanley 1980, Baclawski 1983, King and 
El-Sharkaway 1983, 1984). In terms of Young tableaux for the case of SU(3) these 
are the 3-unitary tableaux which have a single column of length 1 or 2 (see table 5 ) .  

The problem is how to find the syzygies and hence the generating function. 
Baclawski has desribed how these may be found for S U ( n )  and Sp(2n) by introducing 
a partial ordering on the elementary tableaux whereby x < y if and only if the juxtaposi- 
tion xy is a standard tableau; King and El-Sharkaway have extended this procedure 
to the orthogonal groups and have also described a convenient realisation of the partial 

Table 5. Elementary multiplets for SU(3) character generator. 

Auxiliary Auxiliary 
Multiplet labels Tableau Multiplet labels Tableau 

C 

A , f , x 2  

f 
R A 2 X I f 2  

U 

R , 4 2 2 ,  

U 
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ordering as a graph whose nodes lie in R". For SU(3) this graph takes the form: 

3 
0 

where the partial ordering is such that x < y if and only if we may link y to x by a 
directed path. Thus is 
standard, but 1 and are not comparable. Now the generating function is constructed 
by finding the maximal chains c and their decent sets d ( c )  (for definitions see Stanley 
(1980), King and El-Sharkaway (1983,1984), Baclawski (1983)) and then the generating 
function is given by the expression: 

< 3 which corresponds to the fact that the juxtaposition 

Here I(x,)  are the auxiliary labels associated with x, as given in table 5 .  There are two 
maximal chains for SU(3), namely {i, i , l ,  2,3} and { 2 ,  3 ,  3 ,  2,3} with the second having 
decent set {i}. Thus the generating function is 

1 1 2  

(5.3) 
1 

( 1 - Ala,)( 1 - A I . ~ I x ~ ) (  1 - A,xIf,)( 1 - A2~2)  

The fact that the product of 1 and is forbidden corresponds to the fact that they 
are not comparable in the partial ordering. This incompatibility can be understood in 
terms of the stretched product from the fact that there is a syzygy e.b = . f a :  

(5.4) 

In this case things are quite simple since the graph (5 .1 )  provides a convenient way 
of coding the syzygies satisfied by the elementary multiplets and hence of constructing 
the generating function. It would be interesting if similar constructions could be found 
in other cases. An example is provided by the orbit generator of SU(3). In terms of 
tableaux we now consider the subset of 3-unitary tableaux which have dominant SU(3) 
weight (i.e. all weight components non-negative). It is clear that this subset is closed 
under the stretched product and we may once again look for elementary tableaux. 
These are contained in table 6 and the syzygies are in table 7, we are led to the following 
generating function: 

AB( CGE + fGEF + hEFH + dFHD) ( 5 . 5 )  

which is in agreement with that given in Michel et a1 (1988). 
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Table 6. Elementary multiplets for the SU(3) orbit generator. 

1951 

A u x i 1 i a ry Auxiliary 
Multiplet labels Tableau Multiplet labels Tableau 

a 

b 

U 

e 

f B 
d A: h 

Table 7. Syzygies for SU(3) orbit generator. 

1 gh = aef 4 de = ah 
2 cf = bg 5 dg = a 2 f  
3 ch = abe 6 cd = a 2 b  

The generating function for the multiplicities of tensors in the enveloping algebra 
of SU(3) can also be reproduced. There are five elementary tableaux as shown in table 
8, together with one syzygy: 

m 121 

Thus, after eliminating the scalar, we obtain the generating function 

(1 - v2)-l(i - v3)-l(1 - va,a2)-I(i  - u2a ,a2) - l  

x [(I  - u ~ ~ : ) - ~ +  ~ r ~ ~ : ( i  - u ~ ~ : ) - ~ I  
Table 8. Elementary multiplets for the SU(3) enveloping algebra. 

(5.7) 

Auxiliary Auxiliary 
Multiplet labels Tableau Multiplet labels Tableau 

a U 2  

EP U ~ A , A ~  

u3 

U3A: 

U3A: 
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which is in agreement with Couture and Sharp (1980). Here the exponent of U carries 
the degree and the exponents of a ,  and a, the SU(3) (Dynkin) representation labels. 

5.2. Sp(4) generating functions 

The Sp(4) character generator can be rederived in much the same way as for SU(3) 
with the elementary multiplets and syzygies shown in tables 9 and 10. Once again the 
forbidden products correspond to the elimination of elementary multiplets that are 
not related by the partial ordering. However, there seems to be some difficulty in 

Table 9. Elementary multiplets for the Sp(4) character generator. 

Auxiliary Auxiliary 
Multiplet labels Tableau Multiplet labels Tableau 

d 

e A 2 f , f 2  

f 

h 

U 

i A2 

Table 10. Syzygies for Sp(4) character generator. 

1 ag = be 4 bi = dh 
2 ah = bf 5 eh = f g  
3 ai  = df 

obtaining the simplest form of the orbit generator for Sp(4) by this method. This 
generating function has been given in Michel et a1 (1988) and takes the form 

1 
(1 - Q)(1- QB)(l- P2)(1 -PA) 

1+PQA + P2B + P2 
((1 - Q2A2)(1 - Q2)  (1 - P2)(1 - P2B) ( 1  - P2)(1 - Q )  

where P and Q carry the Sp(4) representation labels ( p ,  q ) ,  while A and B carry the 
orbit labels (a ,  b ) .  There appear to be at least three elementary tableaux which do not 
appear in this generating function, namely 
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with corresponding auxiliary labels P2Q, P2QB and P2Q2, respectively. There are 
also a large number of syzygies that do not reflect the simplicity of the generating 
function above. This suggests that using Young tableaux in this case is inefficient; 
extra elementary multiplets are compensated for by extra syzygies that simplify the 
final result. 

5.3. Generating functions from Tokuyama tableaux 

The generating function for the branching Sp(4) c SU(4) (or SO(5) c SO(6)) is given by 

where A , ,  A2 and A3 carry the three SU(4) representation labels and B , ,  B2 carry the 
two Sp(4) representation labels. We find the following correspondence between 
elementary 2-Tokuyama tableaux and the elementary multiplets implicit in this gener- 
ating function: 

(5.10) 

The generating function for Sp(6) c SU(6) is contained in Couture and Sharp 
(1980); there are 15 elementary multiplets which include the six found above. Once 
more there is a correspondence with Tokuyama tableaux, given by 

i- A3B3 i- A4B2 

p- 
i 

ILI 

(5.11) 
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An example of a syzygy is given by the following product: 

6. Comments 

We conclude with some comments. 
( I )  We have considered the weight generators and orbit generators for SU(n) and 

Sp(2n). King and El-Sharkaway (1983) have also introduced Young tableaux for 
SO( n )  and thereby found weight generating functions. It seems to be difficult, however, 
to extend the notion of stretched products to these tableaux. A simple example will 
illustrate the problem. The tableaux for SO(3) consist of a single row with all boxes 
filled with entries from the set (7 ,  1, 0}, weakly increasing under the ordering i < 1 < 0. 
In this case, however, there is an additional type of constraint, namely that no 1 may 
occur on the right of a 7. Thus the entries are either a string of 1s followed by Os or 
a string of 'is followed by Os. The elementary multiplets correspond to a single box 
filled with either a 1, 7 or 0. The problem occurs for the product 

* a. 
This must be identified with the zero weight in the representation (2) and so must be 

Thus the stretched product for SO( n )  Young tableaux, if it can be defined at all, must 
involve not only reordering, but also changes in the entries. 

(11) There exist many other branching rules for which combinatorial procedures 
are known for computing the large-rank multiplicities which must be subsequently 
modified to recover the low-rank result King (1975). These may be used to obtain 
generating functions for these branching rules by generalising the procedures we have 
described. An example is provided by the branching rule Sp(2n)xSp(2m)c  
Sp(2n +2m) with three non-zero labels. In the notation of King (1975) the branching 
may be written ( A ) 5 . 2 ,  (A/Bo)x(a) .  As a result we must combine the algorithms for 
the branchings Sp(2n) c SU(2n) and SU(n) x SU(m) c SU(n + m) to obtain the result. 
The corresponding tableaux thus contain letters corresponding to the first branching 
and numbers corresponding to the second. The resulting elementary tableaux may be 
found in table 11 and the syzygies in table 12. The resulting generating function is 

A B B C m E F G ( D I H  +gDZG+ fDHF+-&IH + y E I G + F f l ? H F ) .  (6.1) 

This generating function may also be obtained in a somewhat easier fashion by 
combining the two generating functions (4.3) and (4.4) for three non-zero labels, which 
are 

(1 - 1 - a161)-'( 1 - a36')-'( 1 - a26J'( 1 - a3a162)-'( 1 - a363)-' 
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for Sp(2n) c SU(2n) and 

(1 - cIx,)-I( 1 - c1y1)-'(l - czx2)-'( 1 - c2yJ'(l - c2x1y1)-I 

(1 - c3x3)-I( 1 - c3yJ1( 1 - c,x2y1)-'( 1 - c,x,yJ' 

Table 11. Elementary multiplets for Sp(2n)  x S p ( 2 m ) c  Sp(2n + 2 m ) ,  three labels. 

Auxiliary Auxiliary 
Multiplet labels Tableau Multiplet labels Tableau 

a2 

03x3 

a3y3 

a3x2y1 

a3xl .v2 

alxl 

Q I Y l  

(IIx1 

a 4 
3 
i 
El 
El 

Table 12. Syzygies for Sp(n)  x Sp( m )  c Sp(2n +2m).  

~~ 

1 de = de 3 fi = hg 
2 f g  =Ili 4 f i =  hg 

for SU( n )  x SU( m) c SU( n + m ) .  The required generating function may now be 
obtained by substituting ci = b;' in the second generating function and then formally 
keeping the constant term with respect to the bi in the product of the two generating 
functions. This procedure also yields the generating function (6.1). 

(111) As a result of the remarkable similarity between the way multiplicities are 
calculated for branching SU(n) x SU( m )  c SU( n + m )  and for Kronecker products in 
SU( n )  the generating function (4.3) for branching multiplicities is also a generating 
function for Kronecker product multiplicities. Thus the presence of the term a4a2b3c3 
indicates that the representation (0, 1,0, 1 , .  . .) occurs in the product of (O,O, 1,0, .  . .) 
with (O,O, 1,0,. . .) with multiplicity one. 
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